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bstract

A temporal stability analysis was carried out to model the atomization of a swirling viscous annular liquid sheet emanating from an air-blast
tomizer subject to inner and outer inviscid swirling air streams. The dimensionless dispersion equation that governs the instability of a viscous
nnular liquid sheet under swirling air streams was obtained. Numerical solutions to the dispersion equation under a wide range of flow conditions
ere obtained to investigate the effect of the liquid and gas flow on the maximum growth rate and its corresponding unstable wave number. The
heoretical behaviour predicted by the dispersion diagrams was compared with the experimental results obtained by the same authors in previous
orks from the atomization of alginate solution using an air-blast atomizer. It was found that the instability model proposed justify the experimental

ffects found for the atomization of the fluid and under the work range for alginate flow rate and viscosity and air flow rate.
2007 Elsevier B.V. All rights reserved.

a
H
e
a
s
f
i
s
a
b
t
u
s

t
t
t

eywords: Polymer; Atomization; Air-blast atomizer; Instability; Growth rate

. Introduction

The process of transforming bulk liquid into a large num-
er of droplets and dispersing them in the form of a spray in
gaseous environment is called as atomization. Liquid atom-

zation is of importance in numerous applications such as fuel
njection in engines, crop spraying, food drying, manufactur-
ng of pharmaceutical products, and lately microencapsulation
pplications [1].

During the last decade atomization techniques as air-blast
r twin-fluid atomization has been widely used [2–4]. In air-
last atomization, low-speed liquid jets are accelerated by the
urrounding high-speed gas flow, usually in the spray flow direc-
ion. The liquid is subjected to both tensile and shearing stresses.
he magnitude of the extension has been shown to be signifi-
ant for applications involving polymer solutions. Twin-fluid
tomizers have a number of advantages over pressure atomizers
ncluding lower requirements for the liquid injection pressure

nd finer sprays. Unfortunately, the process of air-blast atom-
zation is very complex and its physical mechanisms are not
ully understood [1].
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Theoretical and experimental studies on the mechanism of
tomization have been carried out by Rayleigh, Tyler, Weber,
aenlein, Ohnesorge and Castleman [1]. Detailed reviews of

arlier work have been published by Giffen and Muraszew [5],
nd more recently by Chigier [6], and Lefebvre [1] from these
tudies it can be concluded that the wave mechanism has been
ound the widest acceptance among the mechanisms of atom-
zation. According to this theory the disintegration of liquid
heets or liquid jets is caused by the growth of unstable waves
t the liquid–gas interface due to the aerodynamic interactions
etween the liquid and the gas. This type of instability is referred
o as Kelvin–Helmholtz instability [7] and is characterized by
nstable waves that appear in the fluid interface between two
uperimposed fluids of differing densities and velocities.

The waves are generated by factors such as pressure fluctua-
ions or turbulence in the gas stream or liquid stream [8–9]. Due
o aerodynamic interactions, the perturbations grow in magni-
ude and reach a maximum value. When the dynamic pressure
ρaU

2
a /2) of the air stream in air-blast atomization is large

nough, the amplitude of the surface waves will grow if their
avelength (λ) exceeds a minimum value [8–11]. There exists

dominant or most unstable wave number corresponding to the
aximum growth rate and when the amplitude of the distur-

ance reaches a critical value, the wave detaches from the sheet
o form ligaments, which rapidly collapse, forming drops.

mailto:emvalle@usal.es
dx.doi.org/10.1016/j.cej.2007.01.028
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Nomenclature

A vortex strength (m2/s)
D injector exit diameter, diameter of liquid jet (�m)
Da inner diameter of liquid sheet (�m)
Db outer diameter of liquid sheet (�m)
D0.9 diameter at the 90th percentile (�m)
D0.1 diameter at the 10th percentile (�m)
D0.5 diameter at the 50th percentile (�m)
g gas-to-liquid density ratio
h ratio of inner and outer radius
In nth order modified Bessel function of first kind
k axial wave number (m−1)
Kn nth order modified Bessel function of second kind
n Azimuthal wave number
p′ disturbance pressure (N/m2)
P mean pressure (N/m2)
r radial coordinate (m)
Ra inner radius of liquid sheet (m)
Rb outer radius of liquid sheet (m)
t time (s)
u disturbance axial velocity (m/s)
U mean axial velocity (m/s)
v disturbance radial velocity (m/s)
V mean radial velocity (m/s)
w disturbance tangential velocity (m/s)
W mean tangential velocity (m/s)
We Weber number (We = ρlU2Db/σ)
Z Ohnesorge number, μ/(ρlσDb)1/2

Greek letters
η displacement disturbance (m)
μ fluid viscosity (Ns/m2)
ρ fluid density (kg/m3)
σ surface tension (kg/s2)
ω temporal frequency (s−1)
Ω angular velocity (s−1)
θ Azimuthal angle (radian)
φ phase difference (radian)

Subscripts
i inner gas
l liquid phase
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The stability model considers a swirling viscous annular liq-
uid sheet subject swirling airstreams as shown in Fig. 1. Gas
phases are assumed to be inviscid and incompressible. The basic
o outer air
s based on swirling component

Herrero et al. [12], based on atomization processes, have
eveloped a new technology of production of microcapsules
ased on a non-Newtonian fluid alginate solutions, which pro-
uced microcapsules ranged between 1 and 50 �m, with control
ize and a particle size distribution with a relative span factor,
D0.9 − D0.1)/D0.5, less than 1.4. They have studied the effect

f the alginate solution viscosity and flow rate and air flow
ate. They have also developed a mathematical semi-empirical
odel, based on the wave mechanism, to predict the size of the
icrocapsules produced by atomization [13].
ring Journal 133 (2007) 69–77

Therefore, the main aim of this work is to develop a tem-
oral stability analysis to model the atomization of a swirling
iscous annular liquid sheet emanating from an air-blast atom-
zer subject to inner and outer inviscid swirling air streams. The
imensionless dispersion equation that governs the instability
f a viscous annular liquid sheet under swirling air streams will
e derived. Usually this equation is derived and solved for an
nviscid liquid sheet, because this analysis should be used to
mprove the fuel atomization in aircraft engines. The elimination
f the liquid viscosity in the main equations does not affect very
uch the solution in this case. In microencapsulation applica-

ion, where polymers are used the viscosity cannot be eliminated
ecause is a very important parameter especially when the poly-
er has a non-Newtonian behaviour. However, in this work low

olymer concentrations have been used, therefore it would be
ossible to consider the fluid as a Newtonian liquid [14]. For that
eason, numerical solutions to the dispersion equation under a
ide range of liquid viscosity values, and flow conditions will
e carried out to investigate the effects of the liquid and gas on
he maximum growth rate and its corresponding unstable wave
umber. So, the theoretical behaviour predicted by the disper-
ion diagrams will be compared with the experimental results
btained previously from the atomization of alginate solution,
sing an air-blast atomizer.

. Linear stability analysis

.1. Model assumptions
Fig. 1. Annular swirling viscous liquid sheet subject to swirling airstreams.
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ow velocities for liquid, inner gas and outer gas are assumed
o be (Ul, 0, Al/r), (Ui, 0, Ωr), (Uo, 0, Ao/r), respectively. Inner
as swirl profile is assumed to be solid body rotation and outer
as swirl profile is of free vortex type. The assumed velocity
rofiles are similar to the profiles in an air blast atomizer [15].

Sheet instability occurs due to the growth of unstable waves
t the liquid–gas interface. The growth rates of these unstable
aves are governed by fluid properties, nozzle geometry and

ompetition of forces acting on the interface including viscous,
ressure, inertial, surface tension, and centrifugal force. There
xists a dominant or most unstable wave number corresponding
o the maximum growth rate. A temporal linear instability anal-
sis is conducted to determine the maximum growth rate and
he most unstable wave number.

.2. Linearized disturbance equations

The governing equations for viscous annular fluid flows are
he continuity and Navier–Stokes equations that in cylindrical
oordinate system are:

Continuity:

V

r
+ ∂V

∂r
+ 1

r

∂W

∂θ
+ ∂U

∂x
= 0 (1)

Momentum:

∂U

∂t
+ V

∂U

∂r
+ W

r

∂U

∂θ
+ U

∂U

∂x

= − 1

ρ

∂p

∂x
+ ν

(
∂2U

∂r2 + 1

r

∂U

∂r
+ 1

r2

∂2U

∂θ2 + ∂2U

∂x2

)
(2)

∂V

∂t
+ V

∂V

∂r
+ W

r

∂V

∂θ
+ U

∂V

∂x
− W2

r

= − 1

ρ

∂p

∂r
+ ν

(
∂2V

∂r2 + 1

r

∂V

∂r
+ 1

r2

∂2V

∂θ2 − V

r2

+ 2

r2

∂W

∂θ
+ ∂2V

∂x2

)
(3)

∂W

∂t
+ V

∂W

∂r
+ W

r

∂W

∂θ
+ U

∂W

∂x
+ VW

r

= − 1

ρ

∂p

∂θ
+ ν

(
∂2W

∂r2 + 1

r

∂W

∂r
+ 1

r2

∂2W

∂θ2 − W

r2

+ 2

r2

∂V

∂θ
+ ∂2W

∂x2

)
(4)

In order to obtain the linearized disturbance equations, let

= Ū + u, V = v, W = W̄ + w, p = P̄ + p′
(5)

here the overbar represents the mean flow quantities and u, v,
and p′ indicates disturbances. The disturbances are assumed
ig. 2. A schematic description of (a) the para-varicous mode and (b) the para-
inuous mode.

o be of the form:

u, v, w, p′) = (û(r), v̂(r), ŵ(r), p̂(r)) ei(kx+nθ−ωt) (6)

here ∧ indicates the disturbance amplitude which is a function
or r only. For the temporal analysis, the wave number k and
are real while frequency ω is complex. The maximum value

f imaginary ω represents the maximum growth rate of the dis-
urbance, and the corresponding value of k represents the most
nstable wave number.

For such an annular jet, unstable waves develop on both the
nner and outer surfaces, which may be in phase or out of phase.

hen the waves develop in phase, the shapes of the waves are
ntisymmetric with respect to the mid-plane of liquid sheet, and
his kind of instability mode is called the para-sinuous mode
Fig. 2a). When the waves develop out of phase, the waves are
ymmetric with respect to the mid-plane of the liquid sheet, and
his mode is called the para-varicous mode (Fig. 2b) [16].

The displacement disturbances at the inner and outer inter-
aces are given by the following equations:

i(x, θ, t) = ηi ei(kx+nθ−ωt)+iφ (7)

o(x, θ, t) = ηo ei(kx+nθ−ωt) (8)

ere φ indicates the phase difference between the displacement
t the inner and the outer interface.

Substituting Eq. (5) into Eqs. (1)–(4), subtracting the mean
ow equations and neglecting the second-order terms, it is
chieved the linearized equations for velocity and pressure dis-
urbances.

In order to determine the effect of the various forces, prop-
rties of fluids and other geometric parameters, the linearized
quations are non-dimensionlized by introducing the following
imensionless parameters:

Wel = ρlU
2
l Db

σ
, Wei = ρiU

2
i Db

σ
, Weo = ρoU

2
oDb

σ
,

ρlW
2
l Db ρiW

2
i Db ρoW

2
o Db
Wes=
σ

, Wesi=
σ

, Weso=
σ

,

Z = μl

(ρlσDb)1/2 , gi = ρi

ρl
, go = ρo

ρl
, k̄ = kRb,
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ω̄ = ωRb

Ul
,

Ui

Ul
=
√

Wei

Wel

1

gi
,

Uo

Ul
=
√

Weo

Wel

1

go
,

Al

UlRb
=
√

Wes

Wel
,

Ao

UlRb
=
√

Weso

Wel

1

go
,

ΩRb

Ul
=
√

Wesi

Wel

1

gi
, s̄ = (k2 + Z(−iω̄ + ik̄))

1/2
,

h = Ra

Rb

As dimensionless parameters it has included the Weber num-
er, which represents the ratio of aerodynamic force to surface
ension, and the Ohnesorge number, which contains only the
roperties of the globules formed in primary atomization before
hey split up into smaller drops during secondary atomization.
hnesorge number is sometimes called a stability group because

t provides an indication of the resistance of a globule to further
isintegration, but it is also called a viscosity group because
t accounts for the effect of liquid viscosity on the globule.
hnesorge number is used in momentum transfer in general

nd atomization calculations in particular.
Since it is considered three-dimensional perturbations, the

wo surface waves may also be axi-symmetric (n = 0) or non-
xi-symmetric (n = 1) with respect to the central axis of the
et. Several studies have examined the disintegration of non-
wirling liquid sheets and liquid jets subject to axi-symmetric
isturbances. Li and Tankin [17] conducted a temporal insta-
ility analysis of a thin viscous liquid sheet in an inviscid
as medium and found axi-symmetrical disturbances to con-
rol the instability process for small Weber numbers. Liao et
l. [18] reported axi-symmetric mode to be the dominant mode
n the absence of air swirl velocity. Chen et al. [19] carried
ut a linear stability analysis for an annular viscous jet subject
o three-dimensional disturbances and showed axi-symmetric

ode to be the most unstable mode in the system. As such we
ave restricted the present analysis to the axi-symmetric mode.
erturbation in the Azimuthal direction is taken as zero, i.e.

ˆ = 0.
After applying these restrictions it is obtained the linearized

isturbance equations for the liquid phase and the gas phase.
The disturbance equations for the liquid phase are

ˆ (ik) + dv̂

dr
+ v

r
= 0 (9)

(
2

)

ˆ (−iω̄ + ik̄) = −ik̄p̂ + Z

d û

dr2 + 1

r

dû

dr
− û

r2 (k2r2) (10)

ˆ(−iω̄ + ik̄) = −dp̂

dr
+ Z

(
d2v̂

dr2 + 1

r

dv̂

dr
− v̂

r2 (k2r2 + 1)

)
(11)

a
i

t

ring Journal 133 (2007) 69–77

The disturbance equations for the gas phase are

Inner gas:

û(ik̄) + dv̂

dr
+ v

r
= 0 (12)

û

(
−iω̄ + ik̄

√
Wei

Wel

1

gi

)
= − 1

gi
ik̄p̂ (13)

v̂

(
−iω̄ + ik̄

√
Wei

Wel

1

gi

)
= − 1

gi

dp̂

dr
(14)

Outer gas:

û(ik̄) + dv̂

dr
+ v

r
= 0 (15)

û

(
−iω̄ + ik̄

√
Weo

Wel

1

go

)
= − 1

go
ik̄p̂ (16)

v̂

(
−iω̄ + ik̄

√
Weo

Weo

1

gi

)
= − 1

go

dp̂

dr
(17)

.3. Boundary conditions

In the same way, under the above conditions, the following
imensionless boundary conditions are necessary to solve the
inearized disturbance equations. The first boundary condition
s the kinematic condition that a particle of fluid on the surface

oves with the surface so as to remain on the surface or in
ther words, the velocity components normal to the interface is
ontinuous across the interface:

Liquid:

vl = ∂ηi

∂t
+ ∂ηi

∂x
at r = h (18)

vl = ∂ηo

∂t
+ ∂ηo

∂x
at r = 1 (19)

Inner gas:

vi = ∂ηi

∂t
+ ∂ηi

∂x

√
Wei

Wel

1

gi
at r = h (20)

Outer gas:

vo = ∂ηo

∂t
+ ∂ηo

∂x

√
Weo

Wel

1

go
at r = 1 (21)

Due to the inviscid assumption for the gas streams in the
xial and Azimuthal directions, viscous stress at the liquid–gas
nterface is zero. This is expressed as
∂u

∂r
+ ∂v

∂x
= 0 at r = h, 1 (22)

The last boundary condition considers the balance between
he surface stresses on both sides of the liquid–gas interface,



ginee

i
t
a

p

p

2

s

u

v

H
p

u

u

v

u

u

v

D
E

v

S(

o

u

S

v

p

L

s̄

o(

(

f

u

v

a

u

v

u
C

C

C

M

M

M

M

A

(

p′
l = ¯ l

(η̂i eiφI1(k̄)l14 − η̂ol15)I0(k̄r)
E.P. Herrero et al. / Chemical En

ncluding the pressure jump across the interface due to surface
ension and viscous forces. This boundary condition is known
s the dynamic boundary condition and is given by

′
l − p′

i = 1

h2Wel

(
ηi + h2 ∂2ηi

∂x2

)
+ h

Wesi

Wel
ηi

− Wes

Wel

ηi

h3 + 2Z
∂v

∂r
at r = h (23)

′
l − p′

o = − 1

Wel

(
ηo + ∂2ηo

∂x2

)
+ Weso

Wel
ηo

− Wes

Wel
ηo + 2Z

∂v

∂r
at r = 1 (24)

.4. Pressure disturbance inside the liquid sheet

As the governing equations (Eqs. (9)–(11)) are linear, the
olution is decompose into inviscid and viscous parts as

ˆ = û1 + û2 (25)

ˆ = v̂1 + v̂2 (26)

ere the subscripts 1 and 2 represent the inviscid and the viscous
arts of the velocity perturbations, respectively [20]:

ˆ 1(ik̄) + dv̂1

dr
+ v̂1

r
= 0 (27)

ˆ 1(−iω̄ + ik̄) = −ik̄p̂ (28)

ˆ1(−iω̄ + ik̄) = −dp̂

dr
(29)

ˆ 2(ik̄) + dv̂2

dr
+ v̂2

r
= 0 (30)

ˆ 2(−iω̄ + ik̄) = Z

(
d2û2

dr2 + 1

r

dû2

dr
− û2

r2 (k2r2)

)
(31)

ˆ2(−iω̄ + ik̄) = Z

(
d2v̂2

dr2 + 1

r

dv̂2

dr
− v̂2

r2 (k2r2 + 1)

)
(32)

ifferentiating Eq. (28) with respect to r and eliminating p̂ from
qs. (28) and (29):

ˆ1 = − 1

ik

dû1

dr
(33)

ubstituting Eq. (33) in Eq. (27):

d2û1

dr2 + 1

r

dû1

dr
− û1

r2 (k2r2)

)
= 0 (34)

The above equation is a Bessel equation which has a solution
f the form:
ˆ 1 = C1I0(k̄r) + C2K0(k̄r) (35)

ubstituting Eq. (35) in Eqs. (33) and (28):

ˆ1 = −iC1I1(k̄r) + iC2K1(k̄r) (36)
ring Journal 133 (2007) 69–77 73

ˆ = ω̄ − k̄

k̄
(C1I0(k̄r) + C2K0(k̄r)) (37)

et

2 = (k2 + Z(−iω̄ + ik̄)) (38)

Rearranging Eqs. (31) and (32) and using Eq. (38), it is
btained the Bessel equations for û2 and v̂2:

d2û2

dr2 + 1

r

dû2

dr
− û2

r2 (s2r2)

)
= 0 (39)

d2v̂2

dr2 + 1

r

dv̂2

dr
− v̂2

r2 (s2r2 + 1)

)
= 0 (40)

The solutions for Eqs. (39) and (40) can be expressed in the
ollowing form:

ˆ 2 = M1I0(s̄r) + M2K0(s̄r) (41)

ˆ2 = M3I1(s̄r) + M4K1(s̄r) (42)

Then, using Eqs. (25) and (26), the total velocity components
re expressed as

ˆ = C1I0(k̄r) + C2K0(k̄r) + M1I0(s̄r) + M2K0(s̄r) (43)

ˆ = −iC1I1(k̄r) + iC2K1(k̄r) + M3I1(s̄r) + M4K1(s̄r) (44)

Using the boundary conditions (Eqs. (18), (19) and (22)) and
tilizing the solutions from the Bessel equations, the constants
1, C2, M1 to M4 are determined:

1 = i(−iω̄ + ik̄)

l18I1(k̄h)
(η̂i eiφl16 − η̂ol17) (45)

2 = 2k̄2(−iω̄ + ik̄)

l13
(η̂i eiφI1(k̄)l14 − η̂ol15) (46)

1 = 2k̄s̄ i(−iω̄ + ik̄)

l9l11
(η̂i eiφI1(k̄)l12 − η̂ol9l10) (47)

2 = 2k̄s̄ i(−iω̄ + ik̄)

l11
(η̂i eiφI1(k̄)l4l6 − η̂ol9) (48)

3 = 2k̄2(−iω̄ + ik̄)

l9l11
(η̂i eiφI1(k)l12 − η̂ol9l10) (49)

4 = −2k̄2(−iω̄ + ik̄)

l11
(η̂i eiφI1(k̄)l4l6 − η̂ol9) (50)

The coefficients of the constants are available in Appendix
.
Then, the pressure disturbance inside the liquid sheet (Eq.

37)):

ω̄ − k̄
(

2k̄2(−iω̄ + ik̄)
k 13

+ 2k̄2(−iω̄ + ik̄)

l13
(η̂i eiφI1(k̄)l14−η̂ol15)K0(k̄r)

)
ei(k̄x−ω̄t)

(51)
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.5. Pressure disturbance in inner gas

In the same way that in Section 2.4, from Eqs. (12)–(14) and
20), and considering that for inner gas, as r → 0, K0(k̄r) → ∞
which is due to the fact that amplitude of the velocity distur-
ance is bounded at the centreline of the sheet), it is obtained
he pressure disturbance in inner gas:

′
i =

(
gi(ω̄ − k̄

√
(Wei/Wel)(1/gi))

2
η̂i eiφ

k̄I1(k̄h)
I0(k̄h)

)
ei(k̄x−ω̄t)

(52)

.6. Pressure disturbance in outer gas

In the same way that in Section 2.4, from the Eqs. (15)–(17)
nd (21), and considering that for outer gas, as r → ∞, I0(k̄r) →

(which is due to the fact that amplitude of the velocity
isturbance is bounded at infinity), it is obtained the pressure
isturbance in outer gas:

′
o =

(
−go(ω̄ − k̄

√
(Weo/Wel)(1/go))2

η̂o

k̄K1(k̄)
K0(k̄)

)
ei(k̄x−ω̄t)

(53)

.7. Non-dimensional dispersion equation

The final dimensionless dispersion equation is obtained by
ubstitution of Eqs. (52) and (53) into Eqs. (23) and (24), respec-
ively. These lead to the following expressions:

(E1 + E2 + E3) + (E4 + E5) = 0 (54)

(F1 + F2 + F3) + (F4 + F5) = 0 (55)

here α = (η̂i/η̂o) eiφ

Eliminating α from the above two equations, it is achieved a
ourth-order non-dimensional dispersion equation of the form:

H1 − G1H = 0 (56)

Details of the expressions in Eqs. (54)–(56) are available in
ppendix A. In other words, the non-dimensional dispersion

quation can be simply stated as

(ω̄, k̄, s̄, gi, go, Z, Wel, Wei, Weo, Wes, Wesi, Weso, h) = 0

(57)

Unlike the inviscid case, the final dispersion equation does
ot have a closed form solution and is solved numerically
sing MathematicaTM. The Secant method is used where
wo starting complex guess values are required to determine

he roots of the dimensionless dispersion equation. Results
rom the inviscid case are taken as starting guess values. By
arying the value of k, it is solved for the root with the max-
mum imaginary part that represents the maximum growth
ate of disturbance corresponding to the most unstable wave
umber.

g
f
d
t
1
fl

ig. 3. Dispersion diagram at Wei = Weo = Wesi = Weso = 35,128; Z = 0.2;
el = Wes = 0.01 − 2.

. Results and discussion

In the process of determining the disintegration of the
wirling viscous annular liquid sheet emanating from an air-blast
refilmer, the final non-linear dimensionless dispersion equation
as derived based on the assumption that the inner and outer gas
ows are invisid moving axially outward with swirling velocity
omponents. A complete parametric study has been conducted
o insolate the effect of flow conditions and viscosity on the
nstability of the liquid sheet. The non-dimensional parameters
tilized in the final dispersion equation are the axial Weber num-
ers, Wel, Wei, and Weo, swirling Weber numbers, Wes, Wesi, and
eso, Ohnesorge number, Z, axial wave number k, gas to liquid

ir density ratio, gi and go, and the annular liquid sheet inner
nd outer radii ratio, h.

The frequency with the maximum imagery part represents
he most unstable wave that is the perturbation that grows more
apidly than any other and for that reason it dominates the liq-
id sheet breakup process. Therefore, the most unstable wave
umber is related to the mean drop size. The growth rate can be
elated to the breakup length of the liquid sheet. Higher growth
ate indicates shorter breakup length. As such the most unstable
ave number and the maximum growth rate are two important
arameters that will determine the resulting spray character-
stics. These parameters are obtained for a number of flow
eometry conditions and are discussed below. The results are
resented in three graphs (Figs. 3–5) ω = f(k) called dispersion
iagrams. These figures show the expected bell shape, com-
only encountered in linear theory analysis. In each situation,
finite range of unstable perturbations, i.e. showing a positive
rowth rate, was obtained.

.1. Liquid flow rate variation

The influence of the liquid flow rate variation in the
rowth rate is shown in Fig. 3. These results were obtained
or an atomization nozzle of 1.8 mm in previous works con-

ucted by the authors [12]. The experimental conditions were
he following: a constant value of pressurized flow air of
38,000 L/min (Wei = Weo = Wesi = Weso = 35,128) and the liquid
ow rate was modified ranged from 0.003 L/min to 0.037 L/min
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ig. 4. Dispersion diagram at Wel = Wes = 0.11; Z = 0.2; Wei = Weo = Wesi =
eso = 14,808 − 35,128.

Wel = Wes = 0.01 to Wel = Wes = 2). The liquid viscosity was
aintained constant at 64.5 mPa s (Z = 0.2). It can be seen in
ig. 3 that when the liquid flow decrease, the growth rate

ncrease, which indicates shorter breakup length and smaller
rops.

These results are in a very good agreement with the exper-
mental work of Herrero et al. [12], where it was found
xperimentally that the particle size decreases when it is
ecreased the liquid flow. To justify this effect it should be taking
nto account that lower values of liquid flow rate result in thinner
lms. It was observed that thinner liquid films break down into
maller drops.

.2. Air flow rate variation

The influence of the air flow rate variation in the growth rate
s shown in Fig. 4. These results were obtained for an atom-
zation nozzle of 1.8 mm in previous works conducted by the
uthors [12]. The experimental conditions were the following: a
onstant value of liquid flow of 0.009 L/min (Wel = Wes = 0.11)
nd the air flow rate was modified ranged from 89,600 L/min to
38,000 L/min (Wei = Weo = Wesi = Weso = 14,808 to Wei = Weo =
esi = Weso = 35,128). The liquid viscosity was maintained con-

tant at 64.5 mPa s (Z = 0.2). It can be seen in Fig. 4 that when

he air flow increase, the growth rate increase, which indicates
horter breakup length and smaller drops.

These results are in a very good agreement with the exper-
mental work of Herrero et al. [12], where it was found

ig. 5. Dispersion diagram at Wei = Weo = Wesi = Weso = 14,808; Wel = Wes =
.11; Z = 0.2 − 0.6.
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xperimentally that the particle size decreases when it is increase
he air flow. To justify this effect it should be take into account
hat the liquid/air interaction produces waves that become unsta-
le and disintegrate into fragments. These fragments then,
ontract into ligaments, which in turn break down into drops. It
as been proved that when the air velocity is increased, the liquid
heet disintegrates earlier and ligaments are formed nearer the
ip. These ligaments tend to be thinner and shorter and disinte-
rate into smaller drops. For a constant liquid sheet thickness the
reakup length decreases with increase in the relative velocity
etween the air and the liquid.

.3. Liquid viscosity effect

The influence of the liquid viscosity in the growth rate is
hown in Fig. 5. These results were obtained for an atom-
zation nozzle of 1.8 mm in previous works conducted by the
uthors [12]. The experimental conditions were the follow-
ng: a constant value of pressurized flow air of 89,600 L/min
Wei = Weo = Wesi = Weso = 14,808), a constant value of liquid
ow of 0.009 L/min (Wel = Wes = 0.11) and the liquid vis-
osity was modified ranged from 64.5 mPa s to 190.0 mPa s
Z = 0.2–0.6).

It can be seen in Fig. 5 that when the liquid viscosity decrease,
he growth rate increase, which indicates shorter breakup length
nd smaller drops.

These results are in a very good agreement with the experi-
ental work of Herrero et al. [12], where it was found that the

article size increases when it was increased the liquid viscosity.
t can be explained if we consider that the liquid viscosity of the
uid to be atomize, tends to avoid the growth of the instabilities

hat cause the rupture of the jet or liquid sheet, delaying, there-
ore, the disintegration of the liquid and increasing the size of
he microcapsules. In addition, lower values of liquid viscosity
esult in thinner films that break down into smaller drops.

. Conclusions

A temporal instability study of a swirling annular liquid sheet
f polymer produced by air-blast atomization has been done in
rder to model an atomization process to generate microcap-
ules. The dimensionless dispersion equation that governs the
nstability of a viscous annular liquid sheet under swirling air
treams is derived. Numerical solutions to the dispersion equa-
ion under a wide range of flow conditions are carried out to
nvestigate the effects of the liquid and gas flow on the maxi-

um growth rate. The growth rate can be related to the breakup
ength of the liquid sheet.

It has been observed that when the polymer flow decrease,
he growth rate increase, which indicates shorter breakup length
nd smaller drops because of lower values of liquid flow rate
esult in thinner films that break down into smaller drops.

An analysis of the dispersion diagrams shows that when
he air flow increase, the growth rate increase, which indicates

horter breakup length and smaller drops, because of the
iquid/air interaction produces waves that become unstable and
isintegrate into fragments, and contract into ligaments, which
n turn break down into drops.
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When the polymer viscosity decrease, the growth rate
ncreases, this indicates shorter breakup length and smaller
rops.

The theoretical behaviour predicted by the dispersion dia-
rams were compared with the experimental results obtained
rom the atomization of alginate solution using an air-blast atom-
zer. It was found that the instability model proposed justify the
xperimental effects found for the atomization of a fluid and
nder the work range for alginate flow rate and viscosity and air
ow rate.
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ppendix A. Coefficients of the constants

The expressions for the coefficients used in determining the
onstants (Eqs. (45)–(50)) are

1 = 2k̄2iI1(k̄)K1(k̄h) − 2k̄2iK1(k̄)I1(k̄h) (A.1)

¯2 ¯ 2 ¯2 ¯

E1 = − (−iω̄ + ik̄)2

kl18I1(k̄h)
Io(k̄h)l16 + 2ik̄2(−iω̄ + ik̄)2

l13k̄
Ko(k̄h)

− 2Z(−iω̄ + ik̄)I ′
1(k̄h)(k̄)l16

l18I1(k̄h)

E2 = −4Zi(k̄)3(−iω + ik)K′
1(kh)

l13
I1(k̄)l14 − 4Zk̄2(−iω̄ +

E3 = − 1

h2Wel
(1 − h2k̄2) − h

Wesi

Wel
+ Wes

Wel

1

h3

E4 = (−iω̄ + ik̄)2
Io(k̄h)

k̄l18I1(k̄h)
l17 − 2ik̄2(−iω̄ + ik̄)2

k̄l13
Ko(k̄h)l15 +

E5 = −4Zk̄2(−iω̄ + ik̄)s̄I ′
1(s̄h)l10l9

l9l11
− 4Z̄k̄2(−iω̄ + ik̄)s̄K′

1

l11

F1 = − (−iω̄ + ik̄)2

k̄l18I1(k̄h)
Io(k̄)l16 + 2ik̄2(−iω̄ + ik̄)2

k̄l13
Ko(k̄)I1(k̄)l

− 4Zk̄3(−iω̄ + ik̄)K′
1(k̄)

l13
I1(k̄)l14
2 = 2k I1(k)I1(s̄h) − (s̄ + k )I1(s̄)I1(kh) (A.2)

3 = 2k̄2I1(k̄)K1(s̄h) − (s̄2 + k̄2)K1(s̄)I1(k̄h) (A.3)

4 = (k̄2 − s̄2)I1(s̄) (A.4)

F

ring Journal 133 (2007) 69–77

5 = (k̄2 − s̄2)K1(s̄) (A.5)

6 = 2k̄2K1(k̄)I1(k̄h) − 2k̄2iK1(k̄h)I1(k̄) (A.6)

7 = (s̄2 + k̄2)I1(s̄)I1(k̄h) − (s̄2 + k̄2)I1(s̄h)I1(k̄) (A.7)

8 = (s̄2 + k̄2)K1(s̄)I1(k̄h) − (s̄2 + k̄2)K1(s̄h)I1(k̄) (A.8)

9 = l2l6 − l1l7 (A.9)

10 = l3l6 − l1l8 (A.10)

11 = l5l9 − l10l4 (A.11)

12 = l6l11 − l6l4l10 (A.12)

13 = l6l9l11 (A.13)

14 = l8l9l6l4 − l7l12 (A.14)

15 = l8l9l9 − l7l9l10 (A.15)

16 = l13l9l11 − 2k̄2iK1(k̄h)I1(k̄)l9l11l14 − 2k̄2I1(k̄)I1(s̄h)l12l13

+ 2k̄2I1(k̄)K1(s̄h)l9l13l6l4 (A.16)

17 = 2k̄2K1(s̄h)l13l9l9 − 2k̄2iK1(k̄h)l9l11l15

− 2k̄2I1(s̄h)l9l13l10 (A.17)

18 = l13l9l11 (A.18)

The expressions involved in Eqs. (54)–(56) are

l14 − (−ω̄ + k̄
√

(Wei/Wel)(1/gi))
2
giIo(k̄h)

k̄I ′
o(k̄h)

(A.19)

I ′
1(s̄h)I1(k̄)l12 + 4Zk̄2(−iω̄ + ik̄)s̄K′

1(s̄h)

l11
l6l4I1(k̄) (A.20)

(A.21)

−iω̄ + ik̄)k̄I ′
1(k̄h)

l18I1(k̄h)
l17 + 4Z̄k̄3i(−iω̄ + ik̄)K′

1(k̄h)

l13
l15 (A.22)

l9 (A.23)

2Z(−iω̄ + ik̄)I ′
1(k̄)k̄l16

l18I1(k̄h)

(A.24)

4Zk̄2(−iω̄ + ik̄)s̄I ′ (s̄)I (k̄)l

2 = − 1 1 12

l9l11

+ 4Zk̄2(−iω̄ + ik̄)s̄K′
1(s̄)

l11
l6l4l1(k̄) (A.25)
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3 = − (−iω̄ + ik̄)2
Io(k̄)

k̄l18I1(k̄h)
l17 − 2ik̄2(−iω̄ + ik̄)2

l13k̄
Ko(k̄)l15

− (−ω̄ + k̄
√

(Weo/Wel)(1/go))2
giKo(k̄)

k̄K′
o(k̄h)

+ 2Z(−iω̄ + ik̄)k̄I ′
1(k̄)

l18I1(k̄h)
l17 (A.26)

4 = 4Zk̄3i(−iω̄ + ik̄)K′
1(k̄)

l13
l15 − 4Zk̄2(−iω̄ + ik̄)s̄I ′

1(s̄)l10l9

l9l11

− 4Zk̄3(−iω̄ + ik̄)s̄K′
1(s̄)

l11
l9 (A.27)

5 = 1

Wel
(1 − k̄2) − Weso

Wel
+ Wes

Wel
(A.28)

G

H
= − E4 + E5

E1 + E2 + E3
(A.29)

G1

H1
= −F3 + F4 + F5

F1 + F2
(A.30)
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