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Abstract

A temporal stability analysis was carried out to model the atomization of a swirling viscous annular liquid sheet emanating from an air-blast
atomizer subject to inner and outer inviscid swirling air streams. The dimensionless dispersion equation that governs the instability of a viscous
annular liquid sheet under swirling air streams was obtained. Numerical solutions to the dispersion equation under a wide range of flow conditions
were obtained to investigate the effect of the liquid and gas flow on the maximum growth rate and its corresponding unstable wave number. The
theoretical behaviour predicted by the dispersion diagrams was compared with the experimental results obtained by the same authors in previous
works from the atomization of alginate solution using an air-blast atomizer. It was found that the instability model proposed justify the experimental
effects found for the atomization of the fluid and under the work range for alginate flow rate and viscosity and air flow rate.
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1. Introduction

The process of transforming bulk liquid into a large num-
ber of droplets and dispersing them in the form of a spray in
a gaseous environment is called as atomization. Liquid atom-
ization is of importance in numerous applications such as fuel
injection in engines, crop spraying, food drying, manufactur-
ing of pharmaceutical products, and lately microencapsulation
applications [1].

During the last decade atomization techniques as air-blast
or twin-fluid atomization has been widely used [2—4]. In air-
blast atomization, low-speed liquid jets are accelerated by the
surrounding high-speed gas flow, usually in the spray flow direc-
tion. The liquid is subjected to both tensile and shearing stresses.
The magnitude of the extension has been shown to be signifi-
cant for applications involving polymer solutions. Twin-fluid
atomizers have a number of advantages over pressure atomizers
including lower requirements for the liquid injection pressure
and finer sprays. Unfortunately, the process of air-blast atom-
ization is very complex and its physical mechanisms are not
fully understood [1].
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Theoretical and experimental studies on the mechanism of
atomization have been carried out by Rayleigh, Tyler, Weber,
Haenlein, Ohnesorge and Castleman [1]. Detailed reviews of
earlier work have been published by Giffen and Muraszew [5],
and more recently by Chigier [6], and Lefebvre [1] from these
studies it can be concluded that the wave mechanism has been
found the widest acceptance among the mechanisms of atom-
ization. According to this theory the disintegration of liquid
sheets or liquid jets is caused by the growth of unstable waves
at the liquid—gas interface due to the aerodynamic interactions
between the liquid and the gas. This type of instability is referred
to as Kelvin—Helmholtz instability [7] and is characterized by
unstable waves that appear in the fluid interface between two
superimposed fluids of differing densities and velocities.

The waves are generated by factors such as pressure fluctua-
tions or turbulence in the gas stream or liquid stream [8—9]. Due
to aerodynamic interactions, the perturbations grow in magni-
tude and reach a maximum value. When the dynamic pressure
(,oaUZ /2) of the air stream in air-blast atomization is large
enough, the amplitude of the surface waves will grow if their
wavelength (1) exceeds a minimum value [8—11]. There exists
a dominant or most unstable wave number corresponding to the
maximum growth rate and when the amplitude of the distur-
bance reaches a critical value, the wave detaches from the sheet
to form ligaments, which rapidly collapse, forming drops.
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Nomenclature

A vortex strength (m2/s)

D injector exit diameter, diameter of liquid jet (p.m)
D, inner diameter of liquid sheet (.m)

Dy, outer diameter of liquid sheet (pum)

diameter at the 90th percentile (pm)

diameter at the 10th percentile (pm)

diameter at the 50th percentile (p.m)
gas-to-liquid density ratio

ratio of inner and outer radius

nth order modified Bessel function of first kind
axial wave number (m~—')

nth order modified Bessel function of second kind
Azimuthal wave number

disturbance pressure (N/m2)

mean pressure (N/m2)

radial coordinate (m)

inner radius of liquid sheet (m)

outer radius of liquid sheet (m)

time (s)

disturbance axial velocity (m/s)

mean axial velocity (m/s)

disturbance radial velocity (m/s)

mean radial velocity (m/s)

disturbance tangential velocity (m/s)

mean tangential velocity (m/s)

Weber number (We = p; U2Dy/o)

Ohnesorge number, wl(proDy)'?
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Greek letters

displacement disturbance (m)
fluid viscosity (Ns/m?)

fluid density (kg/m?)

surface tension (kg/sz)
temporal frequency (s~ ')
angular velocity (s~!)
Azimuthal angle (radian)
phase difference (radian)
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Subscripts

i inner gas

1 liquid phase

o outer air

S based on swirling component

Herrero et al. [12], based on atomization processes, have
developed a new technology of production of microcapsules
based on a non-Newtonian fluid alginate solutions, which pro-
duced microcapsules ranged between 1 and 50 wm, with control
size and a particle size distribution with a relative span factor,
(Do.9 —Do.1)/Dg 5, less than 1.4. They have studied the effect
of the alginate solution viscosity and flow rate and air flow
rate. They have also developed a mathematical semi-empirical
model, based on the wave mechanism, to predict the size of the
microcapsules produced by atomization [13].

Therefore, the main aim of this work is to develop a tem-
poral stability analysis to model the atomization of a swirling
viscous annular liquid sheet emanating from an air-blast atom-
izer subject to inner and outer inviscid swirling air streams. The
dimensionless dispersion equation that governs the instability
of a viscous annular liquid sheet under swirling air streams will
be derived. Usually this equation is derived and solved for an
inviscid liquid sheet, because this analysis should be used to
improve the fuel atomization in aircraft engines. The elimination
of the liquid viscosity in the main equations does not affect very
much the solution in this case. In microencapsulation applica-
tion, where polymers are used the viscosity cannot be eliminated
because is a very important parameter especially when the poly-
mer has a non-Newtonian behaviour. However, in this work low
polymer concentrations have been used, therefore it would be
possible to consider the fluid as a Newtonian liquid [14]. For that
reason, numerical solutions to the dispersion equation under a
wide range of liquid viscosity values, and flow conditions will
be carried out to investigate the effects of the liquid and gas on
the maximum growth rate and its corresponding unstable wave
number. So, the theoretical behaviour predicted by the disper-
sion diagrams will be compared with the experimental results
obtained previously from the atomization of alginate solution,
using an air-blast atomizer.

2. Linear stability analysis
2.1. Model assumptions
The stability model considers a swirling viscous annular lig-

uid sheet subject swirling airstreams as shown in Fig. 1. Gas
phases are assumed to be inviscid and incompressible. The basic
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Fig. 1. Annular swirling viscous liquid sheet subject to swirling airstreams.
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flow velocities for liquid, inner gas and outer gas are assumed
to be (U, 0, A/r), (Ui, 0, £2r), (Uy, 0, Ay/r), respectively. Inner
gas swirl profile is assumed to be solid body rotation and outer
gas swirl profile is of free vortex type. The assumed velocity
profiles are similar to the profiles in an air blast atomizer [15].

Sheet instability occurs due to the growth of unstable waves
at the liquid—gas interface. The growth rates of these unstable
waves are governed by fluid properties, nozzle geometry and
competition of forces acting on the interface including viscous,
pressure, inertial, surface tension, and centrifugal force. There
exists a dominant or most unstable wave number corresponding
to the maximum growth rate. A temporal linear instability anal-
ysis is conducted to determine the maximum growth rate and
the most unstable wave number.

2.2. Linearized disturbance equations
The governing equations for viscous annular fluid flows are

the continuity and Navier—Stokes equations that in cylindrical
coordinate system are:

Continuity:
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In order to obtain the linearized disturbance equations, let

U=U+u, V=u, W=W+w, p=P+p

®)

where the overbar represents the mean flow quantities and u, v,
w and p’ indicates disturbances. The disturbances are assumed

r para-varicous mode
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Fig. 2. A schematic description of (a) the para-varicous mode and (b) the para-
sinuous mode.

to be of the form:

@, v, w, p) = @), 2(r), D(r), pr)) el EHno=en ©)
where A indicates the disturbance amplitude which is a function
for r only. For the temporal analysis, the wave number k and
n are real while frequency w is complex. The maximum value
of imaginary  represents the maximum growth rate of the dis-
turbance, and the corresponding value of k represents the most
unstable wave number.

For such an annular jet, unstable waves develop on both the
inner and outer surfaces, which may be in phase or out of phase.
When the waves develop in phase, the shapes of the waves are
antisymmetric with respect to the mid-plane of liquid sheet, and
this kind of instability mode is called the para-sinuous mode
(Fig. 2a). When the waves develop out of phase, the waves are
symmetric with respect to the mid-plane of the liquid sheet, and
this mode is called the para-varicous mode (Fig. 2b) [16].

The displacement disturbances at the inner and outer inter-
faces are given by the following equations:

77[,()C7 9’ t) =n; ei(kx+n07wt)+i¢ (7)

No(x, 6, 1) = o e!ErH107e) ®)
Here ¢ indicates the phase difference between the displacement
at the inner and the outer interface.

Substituting Eq. (5) into Egs. (1)—(4), subtracting the mean
flow equations and neglecting the second-order terms, it is
achieved the linearized equations for velocity and pressure dis-
turbances.

In order to determine the effect of the various forces, prop-
erties of fluids and other geometric parameters, the linearized
equations are non-dimensionlized by introducing the following
dimensionless parameters:
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As dimensionless parameters it has included the Weber num-
ber, which represents the ratio of aerodynamic force to surface
tension, and the Ohnesorge number, which contains only the
properties of the globules formed in primary atomization before
they split up into smaller drops during secondary atomization.
Ohnesorge number is sometimes called a stability group because
it provides an indication of the resistance of a globule to further
disintegration, but it is also called a viscosity group because
it accounts for the effect of liquid viscosity on the globule.
Ohnesorge number is used in momentum transfer in general
and atomization calculations in particular.

Since it is considered three-dimensional perturbations, the
two surface waves may also be axi-symmetric (n=0) or non-
axi-symmetric (n=1) with respect to the central axis of the
jet. Several studies have examined the disintegration of non-
swirling liquid sheets and liquid jets subject to axi-symmetric
disturbances. Li and Tankin [17] conducted a temporal insta-
bility analysis of a thin viscous liquid sheet in an inviscid
gas medium and found axi-symmetrical disturbances to con-
trol the instability process for small Weber numbers. Liao et
al. [18] reported axi-symmetric mode to be the dominant mode
in the absence of air swirl velocity. Chen et al. [19] carried
out a linear stability analysis for an annular viscous jet subject
to three-dimensional disturbances and showed axi-symmetric
mode to be the most unstable mode in the system. As such we
have restricted the present analysis to the axi-symmetric mode.
Perturbation in the Azimuthal direction is taken as zero, i.e.
w=0.

After applying these restrictions it is obtained the linearized
disturbance equations for the liquid phase and the gas phase.

The disturbance equations for the liquid phase are

o= dd v
uiky+ —+-=0 O]
dr r

d’a  1da

i(—iw +ik) = —ikp+ Z | —
(=& + ik) ep+ <dr2+rdr

The disturbance equations for the gas phase are
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_ [we 1 -
i —io+iky | — 2| = —Zikp (13)
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We, g gi dr
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Wey go 8o

[ Weq 1 1 dp
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We, gi 8o dr

2.3. Boundary conditions

In the same way, under the above conditions, the following
dimensionless boundary conditions are necessary to solve the
linearized disturbance equations. The first boundary condition
is the kinematic condition that a particle of fluid on the surface
moves with the surface so as to remain on the surface or in
other words, the velocity components normal to the interface is
continuous across the interface:

Liquid:

v=D = (18)
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Due to the inviscid assumption for the gas streams in the
axial and Azimuthal directions, viscous stress at the liquid—gas
interface is zero. This is expressed as
ou n v 0
o ax

The last boundary condition considers the balance between
the surface stresses on both sides of the liquid—gas interface,

at r=h, 1 (22)
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including the pressure jump across the interface due to surface
tension and viscous forces. This boundary condition is known
as the dynamic boundary condition and is given by

1 a°n Weg;
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2.4. Pressure disturbance inside the liquid sheet

As the governing equations (Egs. (9)—(11)) are linear, the
solution is decompose into inviscid and viscous parts as
u=1i;+in (25)
V=101 + 1 (26)

Here the subscripts 1 and 2 represent the inviscid and the viscous
parts of the velocity perturbations, respectively [20]:
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Differentiating Eq. (28) with respect to r and eliminating p from
Egs. (28) and (29):

R 1 diyg (33)
V) = —=—

TR dr
Substituting Eq. (33) in Eq. (27):

dzftl 1 du1 ﬁl —

— — Sk =0 34
(dr2+rdr rz(r) 34

The above equation is a Bessel equation which has a solution
of the form:

=C Io(l_cr) + CzKo(/_Cr) (35)
Substituting Eq. (35) in Egs. (33) and (28):
b = —iC1I1(kr) +iC2 K (kr) (36)

~ ]E _ _
= “’Twl!o(kr) + CyKo(kr)) 37)
Let
52 = (k2 + Z(—id + ik)) (38)

Rearranging Eqs. (31) and (32) and using Eq. (38), it is
obtained the Bessel equations for iéi» and 9,:
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The solutions for Egs. (39) and (40) can be expressed in the
following form:

1 duz
rodr

(s2r% + 1)) =0 (40)

= M1 1y(5r) + M2 Ko(5r) 41)
Uy = M311(5r) + M4K1(5r) (42)

Then, using Eqgs. (25) and (26), the total velocity components
are expressed as

i = Cilo(kr) + C2Ko(kr) + M1 Io(5r) + M2 Ko(5r) 43)
= —1C111(kr) + 1C2K1(kr) + M31(s5r) + M4 K, (5r) (44)

Using the boundary conditions (Egs. (18), (19) and (22)) and
utilizing the solutions from the Bessel equations, the constants
Cy, Cy, My to My are determined:

i(—i@ + ik)

i B elie — fol 45
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The coefficients of the constants are available in Appendix
A.
Then, the pressure disturbance inside the liquid sheet (Eq.
(37)):
., o—k <2122(—ia) + ik)
k

pr= (1 €11 (k)4 — folis) Io(kr)
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2.5. Pressure disturbance in inner gas

In the same way that in Section 2.4, from Egs. (12)—(14) and
(20), and considering that for inner gas, as r — 0, Ko(kr) — oo
(which is due to the fact that amplitude of the velocity distur-
bance is bounded at the centreline of the sheet), it is obtained
the pressure disturbance in inner gas:

[ 8@ — ky/(Wei/ Wen(T/g) 7 e
e kIy(kh)

IO (7(]’1)) ei(]_(x—(f)t)
(52)

2.6. Pressure disturbance in outer gas

In the same way that in Section 2.4, from the Eqs. (15)-(17)
and (21), and considering that for outer gas, as r — oo, Io(kr) —
oo (which is due to the fact that amplitude of the velocity
disturbance is bounded at infinity), it is obtained the pressure
disturbance in outer gas:

o 80@ — K/ Weo/ We 780D o o, =\ _ictxan
Po = <_ kK1 (6) Ko ) e
(53)

2.7. Non-dimensional dispersion equation

The final dimensionless dispersion equation is obtained by
substitution of Egs. (52) and (53) into Egs. (23) and (24), respec-
tively. These lead to the following expressions:

E1+ Ex+ E3)+(Es+ Es)=0 (54)
wF1+F+ F3)+ (Fa+ F5)=0 (55)

where a = (7i/fo) €'
Eliminating « from the above two equations, it is achieved a
fourth-order non-dimensional dispersion equation of the form:

GH — G H=0 (56)

Details of the expressions in Egs. (54)—(56) are available in
Appendix A. In other words, the non-dimensional dispersion
equation can be simply stated as

f((bv ]_<7 37 gi’ gO’ Z9 Wel’ Weiv WeOr WeSv Wesiv WeSOv h) = O
(57)

Unlike the inviscid case, the final dispersion equation does
not have a closed form solution and is solved numerically
using Mathematica™. The Secant method is used where
two starting complex guess values are required to determine
the roots of the dimensionless dispersion equation. Results
from the inviscid case are taken as starting guess values. By
varying the value of k, it is solved for the root with the max-
imum imaginary part that represents the maximum growth
rate of disturbance corresponding to the most unstable wave
number.
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k, wave number (1/m)

Fig. 3. Dispersion diagram at We; =We, = Weg = Wey, =35,128; Z=0.2;
Wey =Wes =0.01 — 2.

3. Results and discussion

In the process of determining the disintegration of the
swirling viscous annular liquid sheet emanating from an air-blast
prefilmer, the final non-linear dimensionless dispersion equation
was derived based on the assumption that the inner and outer gas
flows are invisid moving axially outward with swirling velocity
components. A complete parametric study has been conducted
to insolate the effect of flow conditions and viscosity on the
instability of the liquid sheet. The non-dimensional parameters
utilized in the final dispersion equation are the axial Weber num-
bers, Wej, We;, and We,, swirling Weber numbers, We, Wes;, and
Wey,, Ohnesorge number, Z, axial wave number k, gas to liquid
air density ratio, g; and g,, and the annular liquid sheet inner
and outer radii ratio, A.

The frequency with the maximum imagery part represents
the most unstable wave that is the perturbation that grows more
rapidly than any other and for that reason it dominates the lig-
uid sheet breakup process. Therefore, the most unstable wave
number is related to the mean drop size. The growth rate can be
related to the breakup length of the liquid sheet. Higher growth
rate indicates shorter breakup length. As such the most unstable
wave number and the maximum growth rate are two important
parameters that will determine the resulting spray character-
istics. These parameters are obtained for a number of flow
geometry conditions and are discussed below. The results are
presented in three graphs (Figs. 3-5) w =f(k) called dispersion
diagrams. These figures show the expected bell shape, com-
monly encountered in linear theory analysis. In each situation,
a finite range of unstable perturbations, i.e. showing a positive
growth rate, was obtained.

3.1. Liquid flow rate variation

The influence of the liquid flow rate variation in the
growth rate is shown in Fig. 3. These results were obtained
for an atomization nozzle of 1.8 mm in previous works con-
ducted by the authors [12]. The experimental conditions were
the following: a constant value of pressurized flow air of
138,000 L/min (We; = We, = Weg; = Weg, =35,128) and the liquid
flow rate was modified ranged from 0.003 L/min to 0.037 L/min
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Fig. 4. Dispersion diagram at Wej=We;=0.11; Z=0.2; We; = We, = Wes; =
Wey, =14,808 — 35,128.

(Wep = Weg =0.01 to Wey=Weg=2). The liquid viscosity was
maintained constant at 64.5 mPas (Z=0.2). It can be seen in
Fig. 3 that when the liquid flow decrease, the growth rate
increase, which indicates shorter breakup length and smaller
drops.

These results are in a very good agreement with the exper-
imental work of Herrero et al. [12], where it was found
experimentally that the particle size decreases when it is
decreased the liquid flow. To justify this effect it should be taking
into account that lower values of liquid flow rate result in thinner
films. It was observed that thinner liquid films break down into
smaller drops.

3.2. Air flow rate variation

The influence of the air flow rate variation in the growth rate
is shown in Fig. 4. These results were obtained for an atom-
ization nozzle of 1.8 mm in previous works conducted by the
authors [12]. The experimental conditions were the following: a
constant value of liquid flow of 0.009 L/min (We; = Wes =0.11)
and the air flow rate was modified ranged from 89,600 L/min to
138,000 L/min (We; = We, = Weg; = Weg, = 14,808 to We; = We, =
Wegi = Weg, =35,128). The liquid viscosity was maintained con-
stant at 64.5mPa s (Z=0.2). It can be seen in Fig. 4 that when
the air flow increase, the growth rate increase, which indicates
shorter breakup length and smaller drops.

These results are in a very good agreement with the exper-
imental work of Herrero et al. [12], where it was found
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-

0 0.2 0.4 0.6 0.8 1 1.2 1.4
k, wave number (1/m)

Fig. 5. Dispersion diagram at We; = We, = Weg; = Weg, = 14,808; We) = Weg =
0.11; Z=0.2-0.6.

experimentally that the particle size decreases when itis increase
the air flow. To justify this effect it should be take into account
that the liquid/air interaction produces waves that become unsta-
ble and disintegrate into fragments. These fragments then,
contract into ligaments, which in turn break down into drops. It
has been proved that when the air velocity is increased, the liquid
sheet disintegrates earlier and ligaments are formed nearer the
lip. These ligaments tend to be thinner and shorter and disinte-
grate into smaller drops. For a constant liquid sheet thickness the
breakup length decreases with increase in the relative velocity
between the air and the liquid.

3.3. Liquid viscosity effect

The influence of the liquid viscosity in the growth rate is
shown in Fig. 5. These results were obtained for an atom-
ization nozzle of 1.8 mm in previous works conducted by the
authors [12]. The experimental conditions were the follow-
ing: a constant value of pressurized flow air of 89,600 L/min
(We; = We, = Weg; = Weg, = 14,808), a constant value of liquid
flow of 0.009 L/min (Wej=Wes=0.11) and the liquid vis-
cosity was modified ranged from 64.5mPas to 190.0 mPas
(Z=0.2-0.6).

Itcan be seen in Fig. 5 that when the liquid viscosity decrease,
the growth rate increase, which indicates shorter breakup length
and smaller drops.

These results are in a very good agreement with the experi-
mental work of Herrero et al. [12], where it was found that the
particle size increases when it was increased the liquid viscosity.
It can be explained if we consider that the liquid viscosity of the
fluid to be atomize, tends to avoid the growth of the instabilities
that cause the rupture of the jet or liquid sheet, delaying, there-
fore, the disintegration of the liquid and increasing the size of
the microcapsules. In addition, lower values of liquid viscosity
result in thinner films that break down into smaller drops.

4. Conclusions

A temporal instability study of a swirling annular liquid sheet
of polymer produced by air-blast atomization has been done in
order to model an atomization process to generate microcap-
sules. The dimensionless dispersion equation that governs the
instability of a viscous annular liquid sheet under swirling air
streams is derived. Numerical solutions to the dispersion equa-
tion under a wide range of flow conditions are carried out to
investigate the effects of the liquid and gas flow on the maxi-
mum growth rate. The growth rate can be related to the breakup
length of the liquid sheet.

It has been observed that when the polymer flow decrease,
the growth rate increase, which indicates shorter breakup length
and smaller drops because of lower values of liquid flow rate
result in thinner films that break down into smaller drops.

An analysis of the dispersion diagrams shows that when
the air flow increase, the growth rate increase, which indicates
shorter breakup length and smaller drops, because of the
liquid/air interaction produces waves that become unstable and
disintegrate into fragments, and contract into ligaments, which
in turn break down into drops.
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When the polymer viscosity decrease, the growth rate
increases, this indicates shorter breakup length and smaller
drops.

The theoretical behaviour predicted by the dispersion dia-
grams were compared with the experimental results obtained
from the atomization of alginate solution using an air-blast atom-
izer. It was found that the instability model proposed justify the
experimental effects found for the atomization of a fluid and
under the work range for alginate flow rate and viscosity and air
flow rate.
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Appendix A. Coefficients of the constants

The expressions for the coefficients used in determining the
constants (Egs. (45)—(50)) are

Is = (&* — 5K (5)

le = 2k>K (k)11 (kh) — 2k%iK ( (kh) I, (k)

I = 2 + LG (k) — (5% + kK Gh) (k)
Iy = (5* + K)K1($)]1 (kh) — (5 + K K1 (Sh) I (k)
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(A.15)

e = lislolyy — 2k K (k) I ()lol1 1114 — 2k 11 () I Gh)lal 13
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The expressions involved in Egs. (54)—(56) are
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